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LATTICE GAUGE THEORY AS A NUCLEAR MANY-BODY PROBLEM

6. J. Mathews, S. D. Bloom, and N. J. Snyderman
University of California, Lawrence Livermore National Laboratory
Livermore CA, 94550

ABSTRACT
We discuss the conceptual connection between lattice quantum
chromodynamics and a nuclear many-body problem. We begin with an
illustrative example of how the 0(3) nonlinear sigma model 1in
(1+#1) dimensions can be computed with a nuclear shell-model code
with a speed which is competitive with other approaches. We then
describe progress toward the implementation of this technology in

lattice SU(2) Yang-M111s gauge theory.
INTRODUCTION

Since this 1is a conference on the 1intersections between
particle and nuclear physics, we should begin with a discussion of
how 1t 14s that 1lattice gauge theory occurs at such an
intersection. From a particle theorist's point of view, lattice
gauge theory, as proposed by ll‘llson.'l is the only formulation of
quantum chromodynamics which 1s amenable to numerical solution and
thus, 1s a vehicle in which to analyze the theory of strong
Interactions. From a nuclear physicst's view point, such an
ability to obtain numerical results in QCD will allow for a more
fundamental understanding of nucleonic structure and interactions.

There 1is, however, another reason why this particle-physics
problem is of interest to a nuclear physicist. That reason will
be the main focus of this paper. It is that, at a computational
level, the Hamiltonian formulation? of QCD lattice gauge theor¥
is very similar to a problem which has been at the center o
nuclear physics for many years; namely, the determination of the
eigenstates of a nonrelativistic {interacting many-body system of
coupled angular momenta. 1In this paper, we develop this analogy
and show, as an example, how our existing nuclear shell-model code
can be applied, without modification, to a simple lattice theory,
the 0(3) nonlinear sigma model. This model has many properties in
common with QCD. We also report on our progress toward adapting
this approach to the more realistic SU(2) Yang-Mills pure gauge

theory in (3+1) dimensions.
0(3) NONLINEAR SIGMA MODEL AND THE NUCLEAR SHELL MODEL

To 11lustrate the analogy between lattice QCD and a nuclear
many-body problem, it 1s 1instructive to begin with a simpler
lattice theory in which this equivalence is more transparent. The
0(3) nonlinear sigma model in (1+1) dimensfons has fundamental
similarities to the SU(2) gauge theory in (3+1) dimensions. For
example, it has a set of massless perturbative degrees of freedom
(coldstone bosons), the analogue of gluons in Yang-Mills gauge



theories, which do not arpear in the spectrum of the theory. 1In
both cases, only massive hadronic particles appear 1in the
spectrum. The theory 1s also similar to SU(2) in that 1t 1is
asymptotically free, has 1instantons, and 1s classically scale
jnvariant with the consequent dimensional transmutation 1in the
quantum field theory. Furthermore, the lattice 0(3) model 1is
computationally quite close to the SU(2) lattice gauge theory. As
we shall see, both problems are excercises in the coupling of many
angular momenta and the Hamiltonian matrix elements are, in both
cases, linear combinations of 3n-j symbols.
The Lagrangian density for the nonlinear sigma model 1is,

L= (vgznu:-a": . (u = 0,1) )

where, the field variable, ¢, 1s constrained by ¢¢ = 1.
Thus, & 1s- a three-component unit spin which can be
parameterized by the spherical polar angles, © and ¢; ¢ =
(sinecosey,sinesineg,cos0). The discretized Hamiltonian3 correspond-
ing to equation (1) can be written,

Ha = (a2/4)5C2+ (2/99)301 - &%) - (2)
n n

where, a, 1s the lattice spacing and n labels the sites on a
one-dimensional lattice. The quantum coordinates are 6 and e,
and their; conjugates give the kinetic-energy differential
operator, (2 1n Eq. (2), whose eigenfunctions are the spherical

harmonics.
T2 y(Opon) = MY, (0 o) (3)
The interaction term in equation (2) _simh]y becomes,

- > 4, '

*n®he1 = 3 z.('])mvl.m(on"n"l.-m(em-'l"’n+1) 4)
Therefore, by selecting a basis of angular momentum eigenstates
one can immediately see an analogy with a nuclear shell-model

problem, i.e. the Hamiltonian can be written,

H=3T,+ 3 V (5)
iV g=atd

where the "single-particle® orbitals correspond to sets of angular
momentum eigenstates at each lattice site. The "single-particle"
energies, Ty, now are 2(%+1), and the “"two-body" potential
corresponds to an 1interaction between adjacent 1lattice sites.
This two-body potential 1s a simple dipole-dipole interaction,
very similar to the quadrupole force often appliied in shell-model
calculations.

We have dlagonalized the nonlinear sigma model Hamiltonian
(Eq. 2) using the Livermore system of vectorized Lanczos-method
shell-model codes?. Figure 1 compares our results for a 5 site
lattice in a basis constructed by 3 operations of H on the



strong-coupling ground state (. = 0 on all sites). }ms
S

corresponds to a basis of up to 3707 m-scheme basis vectors.
figure shows the lattice mass gap (essentially the excitation
energy of the L = 1 first excited state relative to the ground
state 1n units of the lattice spacing) as a function of the
coupling constant, (2/g2). Our results compare well with
previous calculations based upon the Monte-Carlo functional
1ntegra15 or a Hamiltonian variational calculationb. Even
though we utilize a much smaller lattice we are able to obtain
" reasonable values for some distance 1into the weak-coupling
regime. Using the Lanczos method in this way, seems to offer the
advantage of fairly rapid convergence to the exact mass gap for a
given basis. This calculation was run in about 100 sec of COC
7600 cpu time per data point. Our good agreement may be somewhat
fortuitous, however, since the results depend upon chosing the
right combination of lattice and basis sizes. Nevertheless, these
results have encouraged us to apply these same techniques to the
more challanging Yang-Mills theories.
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Fig. 1 Lattice mass gap for 0(3) nonlinear sigma model in
(1+1) dimensions. Results from our Lanczos-method
shell-model code are compared with other techniques.

SU(2) LATTICE GAUGE THEORY IN (3+1) DIMENSIONS

Unlike QED without the electron field, which is a theory of
free photons, the SU(2) gauge theory without quark fields 1s an
interacting theory of closed-loop electric flux vorticies
(glueballs). 1In the presence of quark fields, this electric flux



string can end on quark charges, making quark-antiquark mesons.
(In the SU(3) theory, "Y" configuratiens of flux are ailso
possible, which confine three quarks.)

In the lattice theory, on each 1ink there {s the field
variable, exp(igAa), where the vector potential, A = A-t/2. is a
2x2 matrix. The product of these operators around a closed loop
on the lattice is the exponential of the magnetic flux through the
loop. _The vector potential becomes a set of angular variables,
e = gKh. which are the quantum coordinates. In the gauge where
the scalar potential is zero, the electric fields become canonical

momenta and the Hamiltonian can be wr1tten.2
= (g /2)):32 + (27902 - 2 truluzu*u ) (6)

where, 2 4s a kinetic-energy differential operator whose
eigenfunctions are the Wigner D- matrices, and eilgenvalues are
J(3+1), where J = 0, 172, 1, 3/2, +++. The interaction term,
triqUou3uf, is a  contraction of  four  D-matricles
around a closed loop of four adjacent links on the lattice, a
placquette. The basis states correspond to the excitation of
angular momenta of 1inks on the lattice for different numbers of
placquettes under the addtional constraint (Gauss' law) that the
the angular momenta of the links 1intersecting a given site must

couple to zero.
Because of the large number of states associated with the

implementation of a four-body operator, it is not feasible to
treat this problem with an m-scheme code as we did with the
nonlinear sigma model discussed in the previous section. With the
constraint of Gauss' law, imposed by Clepsch-Gordan coefficients,
the m's can be summed over, so the basis states are completely
specified by the angular momenta on the 1links of the 1lattice.
Therefore, the Hamiltonian SU(2) lattice gauge theory can also be
thought of as a many-body system of coupled angular-momentum
states. The main distinction from a nuclear many-body problem
will be that the interaction term is a four-body operator.

Since the Lanczos algorithm4 is based upon an iterative
scheme 1involving successive operations of the Hamiltonian on a
given start vector (the noninteracting strong-coupling ground
state), we have found it convenient to rewrite the algorithm in
terms of a nonlinear iterative combination of the diagonal matrix
elements of the strong coupling ground state for powers of the
Hamiltonian. These matrix elements can then be decomposed as a
sum of products of the matrix elements of the Hamiltonian between
arbitrary intermediate states. These intermediate matrix elements
can be conveniently reduced (via angular-momentum coupling
algebra) to the product of a Racah coefficient and two 9-j symbols
around the four corners of a placquette. The problem then reduces
to the calculation of these coupling coefficients.

A major simplification can be 1introduced by exploiting
translational 1invariance on the 1lattice. The most efficient
explo1tat1on of this degeneracy has been proposed by Horn and
Weinstein?+8. The problem of computation of <H"™ can be



reduced to the calculatfon of only terms which have a linear
dependence on the volume, 1.e. an overall translational degeneracy

of N, where N is the number of placquettes on the lattice. These
Tinear contributions correspond to connected graphs, (intersecting
placquettes). The usual calculation of connected graphs involves -
excluded volume factors which are extremely difficult to compute.
Horn and Weinstein?+8 have found a way to circumvent this
problem such that only manifestly connected graphs occur in the
computation of the matrix elements. This approach can lead to an
enormous simplification of <the problem. For example, the
calculation of <H%> on a 3x3x3 lattice requires 7695
intermediate states. This calculation can be reduced, however, to
the calculation of 3 manifestly connected graphs. We are
currently in the process of implementing this algorithm for the
calculation of high powers of <H™. We estimate that with
these simplifications we should be able to calculate to order
<H<Y>.
At present we have available matrix elements of up to
<H10>  (basis of H5) <computed by Duncan and Roskies®
using a different technique. This Timited basis, however, only
allows for 5 Lanczos f{terations on the strong-coupling ground
state start vector. Although with each 1{iteration we are
approaching closer to the weak coupling regime, many more Lanczos
{iterations, within this fixed basis, will be required before we
approach the weak coupling regime. With a basis of up to W10,
and applying enough Lanczos iterations in this basis, we expect to
reach the scaling regime necessary to obtain reliable calculations
of the hadronic mass spectrum. '
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